

A New Object-Order Ray-Casting Algorithm

Benjamin Mora, Jean-Pierre Jessel, René Caubet
Institut de Recherche en Informatique de Toulouse (IRIT), Université Paul Sabatier, 31062 Toulouse, France

l

ABSTRACT
Many direct volume rendering algorithms have been proposed

during the last decade to render 2563 voxels interactively.
However a lot of limitations are inherent to all of them, like low-
quality images, a small viewport size or a fixed classification. In
contrast, interactive high quality algorithms are still a challenge
nowadays. We introduce here an efficient and accurate technique
called object-order ray-casting that can achieve up to 10 fps on
current workstations. Like usual ray-casting, colors and opacities
are evenly sampled along the ray, but now within a new object-
order algorithm. Thus, it allows to combine the main advantages
of both worlds in term of speed and quality. We also describe an
efficient hidden volume removal technique to compensate for the
loss of early ray termination.
CR Categories : I.3.3 [Computer Graphics]: Picture/Image
Generation, I.3.7 [Computer Graphics]: Three-Dimensional
graphics and realism, Raytracing, Visible line/surface algorithms.
Keywords : Volume Rendering, Scientific Visualization,
Medical Imaging, Ray Tracing.

1. INTRODUCTION
Volume visualization has been widely studied over the last decade
due to the expansion of scientific devices producing such data.
Many algorithms have been developed, and some of them are
regrouped under the category of direct volume rendering (DVR)

methods in which the whole original dataset is used for the
rendering without any intermediate representation of the volume.
In DVR algorithms, the interaction between rays traced from the
viewpoint and the volume is studied, which allows high quality
images and a great freedom of action. Several models of
interaction are widely used nowadays, like the maximum intensity
projection (MIP) model that returns the maximum value
encountered along the ray, or the accumulation model that
integrates the signal. Here, we will only focus on optical models
[10, 16] that are common to many volume rendering applications,
even if our algorithm can be easily extended to other models. The
Kajiya�s optical model in its low albedo form is given by:

() () ()∫ ∫

−××=

l s

dsdttssCI
0 0

exp ττλλ
 (1)

Where Iλ is the amount of light of wavelength λ along the ray
reaching the viewpoint. The contribution of the ray at the location
s is given by Cλ(s) weighted by the extinction coefficient τ(s) and
by the percentage of occlusion that depends on the opacity
between the viewpoint and s. However this integral cannot be
evaluated as it is, and a Riemann sum is often used to approximate
it. This way, rays are usually evenly sampled with a distance ∆s,
and the accumulated color (Ci) and opacity (αi) are estimated with
the recursive process given below (front-to-back order):

Ci+1 = Ci + (1-αi) αsCs (2)

 αi+1 = αi + (1-αi) αs
It is obvious that the accuracy of the integral estimation directly

depends on the distance ∆s and on the evaluation of the values αs
and Cs. A large sampling distance can accelerate the rendering
times, but on the other hand it provides low quality images.
Furthermore the sampled values αs and Cs have to be estimated
from the discrete volume data with a reconstruction filter. Thus
the choice of the reconstruction filter is crucial and nowadays
only the trilinear filter and the Gaussian filter, usually considered
as reasonable quality filters, can perform direct volume rendering
in acceptable times, even if studies [15] have shown that a better
quality can be obtained with more complex filters. Then a good
volume rendering application should provide the best compromise
between quality and speed.

In this paper we will intend to give such a trade-off by using an
efficient approach to compute ray-casting. Usually, trilinear
interpolation is made easier with this algorithm, but the pixel-by-
pixel approach (also called image-order) drastically slows down
the rendering process, even if the hidden regions of the volume
are not processed. On the opposite, the projection approaches
(also called object-order) are well-suited for skipping empty
regions, but the usually associated filters are either low-quality
filters or too complex to be interactive, and hidden volume
removal is not very efficient. Our approach combines the
advantages of both approaches to produce interactive high-quality
volume rendering.

First, in section 2, we will look at today�s mostly used
techniques and we will try to explain the strengths and

{mora, jessel}@irit.fr

Figure 1: Two-pass volume rendering of a 2563 bonsai dataset,
visualized at approximately 3 frames per second.

weaknesses of each approach. Then, in section 3, we will describe
the new object-order ray-casting algorithm. Finally, we will show
in section 4 that efficient hidden volume removal is possible with
it before giving our results in section 5.

2. PREVIOUS WORK
Four main software algorithms have emerged in the last decade
[18] and are widely used: the Shear-Warp method and the
Hardware-assisted 3D texture mapping techniques that are speed
oriented, and the quality oriented ray-casting and splatting
algorithms.

Shear-Warp [12] is currently considered as the fastest software
algorithm. It offers many optimizations probably allowing
unbeatable rendering times. This object-order method considers
the volume as a stack of 2D slices parallel to the face of the
volume the most perpendicular to the view axis. Slices are
accumulated on an intermediate image that undergoes an ultimate
resampling step to produce the final image. The intermediate
image is aligned with the slices and has the same pixel density,
allowing both the volume and the image to be run in an efficient
memory order, and to perform fast projection (i.e. one voxel is
projected on one pixel). To improve quality, a bilinear
interpolation is made for every projection with constant
coefficients within a slice. Finally an efficient pre-classified run-
length encoding of the volume allows skipping quickly empty
regions.

However, regarding quality, this algorithm has many drawbacks.
First, the sampling rate on the z-axis is between 1 and 1.73
according to the viewpoint, which is definitely not enough for the
observation of thin volume structures. The pre-classification
partially blurs the intermediate image, which is increased by the
final resampling step. Finally, artifacts occur when the viewing
angle is close to 45o due to the bilinear interpolation. Thus, the
global quality provided by the original implementation turns out
to be poor.

A solution to these drawbacks is to use trilinear interpolation,
post-classification and supersampling, as implemented in the
VolumePro board [26]. This PCI board can render 500 million
interpolated samples per second with a brute-force Shear-Warp
algorithm (parallel projection), which is sufficient to render 2563
volumes at 30 frames per second. Supersampling can be computed
on hardware in the z-direction and on software in the x and y
directions by rendering several images at different offsets.
However supersampling divides the frame rate by the number of
samples per voxel, and then if the sampling rate along the 3 axes
is doubled to produce high quality images, the frame rate can
decrease to under 4 frames per second. Furthermore, applying
these improvements on the original algorithm should also reduce
greatly its performances. Thus, real time high quality volume
rendering should not be really possible yet by using a shear-warp
algorithm.

Another popular way to perform interactive volume rendering is
to use 3D texture mapping hardware [1, 2, 4, 17, 29] by extracting
and compositing 2D planes parallel to the image plane, but until
recently the proposed approaches had several limitations, like
binary classification or diffuse shading only. Engel and al. [3]
have used the NVidia�s OpenGL extension available with the new
Geforce3 graphics hardware to circumvent these drawbacks.
Although real-time rendering rates are possible on small volumes
(<1283) with the current available implementation, it does not

exceed 2 frames per second for 2563 volumes due to the high
memory bandwidth needed. Furthermore the large distance (∆s=1)
between the extracted slices can miss small details or produce
artifacts in spite of the very interesting pre-integrated
classification used. Thus the main advantage of this approach is to
provide constant and at least interactive perspective renderings
with a reasonable quality, even if the flexibility of the 3D texture-
based methods is still low.

 Like the 3D texture-based algorithms, splatting has also come
to maturity over the years since the first release proposed by
Westover [31]. A Gaussian filter is usually associated with this
method, but its use requires several refinements within the
algorithm. In the latest versions proposed by Mueller et al. [23,
24], slices are extracted parallel to the image plane and combined
with a sheet buffer in a front-to-back order. Post-classification and
post-shading can also be done to improve the image quality. The
main drawback is that this algorithm is rather slow and even an
optimized release [8] needs several seconds to render an
isosurface. However, the global quality that can be obtained with
this filter is different from, but not really superior to, the one
obtained with a trilinear filter [18]. While this latter produces
more aliasing, the Gaussian filter is a low-pass filter blurring
small details within the volume. Thus it seems that splatting with
a gaussian kernel is not interesting if compared with trilinear
interpolation because the larger kernel size limits its efficiency.

Ray-casting is another way to produce good quality images
because trilinear interpolation can easily be implemented,
although other filters can also be used [21]. Another great
advantage is the incoherency between the rays that reduces greatly
the staircase artifacts visible in algorithms extracting 2D planes,
like with 3D texture-based DVR. Last but not least, early ray
termination avoids the hidden regions to be treated. However, this
algorithm is naturally slow because it is a pixel-by-pixel approach.
Every time the ray steps forward within the volume, eight samples
have to be loaded before performing trilinear interpolation. This
creates cache misses because the samples cannot be stored in
memory order. Furthermore, other rays rerunning the same cell
may not take advantage of the preloaded data in the cache because
the cache lines are often replaced by other data. On the contrary,
the object-order methods access the voxels a limited number of
times and produce traffic on the frame buffer, which is preferable
because the image caching is generally better and easier than the
volume caching. The second drawback is the difficulty to skip
empty regions of the volume, especially when interactive
classification is needed.

Several acceleration techniques have been proposed to reduce
rendering times. Yagel and Kaufman [34] proposed the use of the
same template ray to accelerate volume traversal. Sobierajski and
Avila [37] proposed a two-step method. First, boundary cells are
projected on the image plane using graphics hardware to identify
more precisely the relevant parts of the rays. Then, a standard ray-
casting is used. Interactive renderings are possible [28] for 2563
volumes with 2562 rays. However as this method did not allow
efficient interactive classification, Westermann and Sevenich [30]
used 3D textures instead of boundary cells to estimate the start of
the ray traversal. Although those methods are efficient for
isosurface renderings, they do not address the problem of the
vertex loading and then are not efficient in other cases. Thus,
Knittel [11] proposed the interleaving of voxel addresses, like
many hardware implementations do, and deep optimizations to
improve cache hits. Tile-casting was also used to take advantage

of the ray coherency in space. Nonetheless, the acceleration data
structure used for empty space skipping has to be recomputed to
get optimal rendering times when the classification is changed,
which limits the interactivity. Interactive rendering rates are
possible on a small perspectives image (2562) with a bi-PIII
clocked at 500 MHz.

Thus, the current image-order ray-casting implementations have
several gaps limiting the rendering times. The new object-order
ray-casting we are looking at here tries to take advantage of both
the quality produced by trilinear interpolation and the efficiency
of the object-order methods (optimized volume run and easy
space leaping). Thus, it is suitable for high-quality interactive
volume rendering. We also propose a hidden volume removal
algorithm to compensate for the loss of the early ray termination
optimization inherent to image-order algorithms.

3. OBJECT-ORDER RAY-CASTING
The reconstruction filter employed in object-order algorithms is
closely related to the projection technique used [32]. Until
recently, it was limited to the projection of Gaussian kernels with
the splatting algorithm, to the projection of one cell on one pixel
with the shear-warp algorithm, or to the projection of the cell
faces with polygons [36], which has serious drawbacks. Recent
advanced methods [19, 22] have shown that the projection of a
parallelepipedic shape can be efficiently performed when using an
orthogonal projection. Therefore, it makes object-order ray-
casting possible.

 For every cell that has to be rendered (i.e. not transparent and
not hidden), the pipeline is as follows: first, the values and
gradients of the 8 vertexes are loaded. Then, for every ray
intersecting the cell, colors and opacities are sampled along it
before updating the equivalent pixel. The next sections describe
the main parts of this pipeline.

3.1 Efficient Ray-Cell Intersection
When using orthogonal visualization, every cell projection on the
image plane is given by the same template hexagon modulo a

translation. The projection of the center of the cell is just able to
inform us about this translation vector. Therefore, a square made
of four neighboring pixels is subdivided and a list of relative
coordinates corresponding to the projection of the cell is
associated with each subdivision (Pixel index in fig. 2a). The
rasterized pixels are simply given by the addition of the pixel
indexes of the subdivision containing the projected center of the
cell with the global coordinate of the square where the center is
projected. Here, all the lists are precomputed every time the
viewpoint change and the use of a linear indexing improves the
efficiency. However, some erroneous pixels can be projected
because the same list is used with all the cells so that the centers
are projected within the same subdivision. Fortunately the
probability is low and can be corrected by testing line equations.
See [19] for a complete description about this implementation.

3.2 Evenly Spaced Sampling
The previous section has shown how to determine the rays going
through a cell with precision. Now, the sequential process (2)
estimating the line integral (1) must be performed for each ray in a
front-to-back order to ensure the right evaluation. Thus, the
intermediate luminance and density values needed in (2) are
stored as 16 bits unsigned integers for every pixel. However, two
main difficulties arise from this technique. First, the sampling
coordinates within the cell needed for trilinear interpolation have
to be computed quickly. Second, sampling points should be
evenly spaced to evaluate precisely the Riemann sum. In order to
make them possible, the algorithm uses both a set of preprocessed
rays and a four-bits depth-sampling indicator aliased to the four
lower bits of the pixel opacity.

The set of preprocessed rays (fig. 2b) is used to find out the ray
entry point within the cell. Each element stores the 3 entry
coordinates (x, y, z) as 16 bits unsigned integers representing
values in the range [0..1], plus an additional ray length used for
evenly spaced sampling. Thus, a ray number pointing to the best
representative preprocessed ray is assigned to every pixel of the
projection lists (ray index in fig 2a). Here, directly storing a
preprocessed ray with every pixel would be less efficient because
it would increase the table size. The set of rays is reconstructed

Size 1 2 3 4 5 6
Pixel Index 5 -511 0 1 512 513 ,,,
Ray Index 2 8 11 13 1 ,,,

0 1

512 513

-511

Pixel list (a)

Set of precomputed rays (b)

Projected Hexagon

 Pixels

Precomputed ray

Image space Object space

 Entry point

x y z Length
1 0.3 0.2 0 5

� � � � �
m � � � �

Ray ParametersPrecomputed
Ray

Figure 2: Lists needed for efficient ray-cell intersections and ray sampling.

every time the viewpoint changes by sampling the square
surrounding the template hexagon (fig. 2b image space) and
computing the ray parameters at each sampling location.

The depth-sampling indicator is now used to ensure a regular
sampling of the ray between two consecutive cells. It determinates
how many unit translation vectors (UTVs) must be added to the
entry point to obtain the first sampling location. The next
sampling locations of the ray within the cell are given by adding a
constant translation vector depending on the sampling rate. The
UTV is parallel to the viewing direction and it is defined as 16

1 of
the longest vector crossing the cell, which means that its
coordinate on the major projection axis is also equal to 16

1 . The
maximum number of UTVs that can be added to the entry point
before going out of the cell gives the length parameter of the
preprocessed rays. Thus, the basic algorithm to compute a ray/cell
interaction is as follows:
Void Accumulate(RAY ray, PIXEL pixel, int sampling_rate) {

 int next_sampling=pixel.density & 0xF; //First sampling point
 While (next_sampling < ray.Length) {

 xyz=ray.xyz+next_sampling×UTV.xyz;
 Interpolate & Accumulate (xyz, pixel);
 next_sampling+=sampling_rate;//Next sampling point
 } // Next sampling is out of the cell
 next_sampling -= ray.Length;
 pixel.density=(pixel.density & 0xFFF0)+next_sampling;

}

Here, sampling_rate is an arbitrary value within the range
[1..16]. We point out the fact that while cells are correctly

traversed by rays, the sampling positions (and thus, the trilinear
weights) are approximated with our technique (fig. 4). This is due
to the limited set of preprocessed rays, to the limited number of
projection lists and to the four-bits only depth indicator. Accuracy
can be improved by increasing the size of tables and the number
of bits in the depth indicator. However it also increases cache
misses and reduces randomizing, which is not necessarily good
because it trades noise for aliasing (fig. 3b).

3.3 Interleaving Depth Indicators
While usual methods (Shear-Warp, 3D Textures and Splatting)
sample the volume at the same depth locations, ray-casting can
benefit from the incoherency between the rays to improve
rendering by using a shifted sampling (fig. 5b). Theußl et al. have
shown [27] that this way to sample the volume provides a better
accuracy than the usual rectilinear sampling. In our algorithm,
half of the depth indicators are initialized to zero and the others to
half of the sampling rate such that every pixel has a different
initialization than its four nearest neighborhoods. The use of
randomized patterns is also conceivable. Figure 3 shows the
resulting improvement. While staircase effects are visible when
sampling at constant depths (fig. 3b and 3c), even with high
sampling rates, interleaving depth indicators (fig. 3d) clearly
reduces this aliasing.

4. OPTIMIZATIONS
Some improvements in the previous algorithm are implemented to
obtain a really efficient approach. Here is a method on how to

Figure 3: Different renderings with ∆s = 1 (b), ∆s = 0.5 (c) and ∆s = 0.5 plus interleaving of the depth indicators (d).

b c d a

 (a) (b)

Figure 5: Usual rectilinear sampling (a) and shifted sampling (b)
Normal Ray-casting

Object-order Ray-casting

Sampled Points

Figure 4: Randomized ray sampling in Object-order ray-casting

skip transparent and hidden regions. Some other optimizations are
also mentioned.

4.1 Skipping Transparent Regions
Because the classification process can eliminate a great part of the
volume [12], skipping transparent regions is a major improvement
in software volume rendering. However, a user-friendly
application should always allow changing the classification
interactively. In this way, a min-max octree structure is used in
addition to the usual volume representation. The leaf nodes store
the minimum/maximum values of the 8 vertexes of the
corresponding cell while the other nodes bring up the values of
their 8 sons.

Here, octrees have several advantages. First, using a trilinear
reconstruction kernel makes traversing the octree in a front-to-
back visibility order possible, which is not feasible in usual
splatting methods without artifacts. Second, the octree can be run
in an efficient memory order (with cache hits), whatever the
viewpoint is. Third, two cells run consecutively are projected
close to one another most of the time, which improves image
caching. Fourth, it allows changing the classification interactively
[12]. Finally, hidden nodes can be skipped with the new algorithm
presented in the following section.

4.2 Hidden Volume Removal
In contrast with usual computer graphics applications where
efficient occlusion culling methods have been widely studied [6,
7, 35], elimination of hidden volumes must be deeply improved in
object-order DVR. A scan-line method was used in [12], but the
efficiency of such a method seems limited. Mueller et al. [25]
have proposed an occlusion test for splatting avoiding the
projection process, but this test performed on every voxel
remains. A more interesting approach is given by Lee and Ihm [9]
where a min-max octree is used in association with either a range
tree or a quadtree. Nonetheless, while the visibility test is not
efficient with the former, the node visibility is approximated with
the latter, providing artifacts. In fact the main problem of this
approach comes from the use of trees that do not allow efficient
neighbor finding. Instead, our new algorithm is based on
hierarchical occlusion maps (HOMs) [35], which is by far
superior for skipping the hidden nodes of the octree. This section
only describes the two main lines of this algorithm: how HOMs
are updated and how to perform the visibility test.

HOMs are images where the pixels store an integer value in the
range [0..16] and are initialized to 0. The first occlusion map size
is equal to quarter of that of the image and the last occlusion map

of the hierarchy only represents one pixel. The updating process
begins on the first HOM (i.e. the finest map) every time a pixel of
the image plane becomes opaque. In this case the pixel of the
HOM including the opaque pixel and its 3 nearest pixels in the
map are incremented (fig. 6a). When an HOM pixel reaches its
maximum value (i.e. incremented 16 times), updating starts again
recursively at the superior level. Thus, the complexity of this
process is equal to m2.Log2(m) only, where m is the image width.
However, an opacity test must also be added for every treated ray.

The visibility process consists in determining the hidden nodes
during the rendering. Because the projection of a node is also
represented by a hexagon, an HOM level is now associated with
every octree level. This HOM level is equal to the finest level
such that a HOM pixel can include the entire projection of the
octree node (fig. 6b). Thus, the visibility test is performed for each
node by looking if the pixel of the corresponding occlusion map
where the center of the node projects is equal to 16. This value
means that an extended square around the pixel made of 16
quarter of pixel (fig. 6b) is opaque.

Figure 7 shows an example of an octree run with efficient
hidden volume removal. In this example, most of the encountered
leaf nodes are located near the visible surface, though some of
them are surprisingly far beyond because the recursive run of the
volume allows efficient but non-optimal hidden volume removal.
Another observation is the rareness of big block skipping. This is
mainly due to the low accuracy given by the corresponding
occlusion maps.

4.3 Other Optimizations

4.3.1 Fast Projection

The projection of the center of the octree nodes is a key element
in our application because it is used in the visibility process (§
4.2) and for determining the rays intersecting the cell (§ 3.1).
Here, the use of an orthogonal projection allows the projected

(a)

(c)

(b)

Figure 7: (a) Rendering example. The blue line gives the cutting plane.
(b) Segmented cross section plus octree traversal. Here the non-leaf
nodes crossing the blue area are removed by the occlusion test. (c)
HOMs after the rendering (Level 0 [2562] => Level 5 [82]).

(a) (b)
Figure 6: Examples of an occlusion map used during the updating
process (a) and the visibility test (b).

+1 +1

+1 +1

Opacified pixel from
the inferior level Opaque area (P[x, y] =16)

Projected centers

y

x

center of a node to be computed from the projected center of the
parent node by a simple 2D translation. In this way, eight constant
2D translation vectors are preprocessed for every level of the
octree. 32 bits integer arithmetic is also used to quickly determine
the subdivisions and the pixels affected by the projection and to
quickly update recursively occlusion maps. Finally, the depth
component used for fast depth cueing is computed in the same
way.

4.3.2 Classification and Shading

Classification and shading are computed on every sampled point
along the ray from the volume samples and the gradient by using a
trilinear interpolation. Usually, classification and shading are
performed either before the interpolation step (preclassification
and preshading) or after (postclassification and postshading). The
first technique is fast while the latter gives better results.
However, in the case of preclassification and preshading it is
strongly recommended to use opacity weighted color interpolation
[13, 33]. Our approach is a hybrid method using postclassification
but only preshading, in order to not degrade speed. Here the
volume gradient is precomputed like many algorithms do [11, 12,
19], and a number indexing a set of quantized space directions is
associated with every voxel. Shading is applied on every
quantized direction before every rendering and the resulting pre-
shaded reflectance map is used during the rendering to shade the 8
vertexes before the color interpolation at the sampling location.

Mueller et al. [24] have shown an example of preshading and
postclassification with bad artifacts. We want to point out that no
artifact is visible with our application and we think that the given
interpretation of this phenomenon is probably erroneous.

4.3.3 Optimized Trilinear Reconstruction

MMX, SSE or 3DNow! SIMD processor extensions have been
used to improve memory copying and trilinear interpolation.
Color and opacity have been computed on 16 bits unsigned
integers. However, code running on MMX only processors does
not allow the line equation tests to take place (cf. 3.1) and then
minor artifacts can occur on the image.

4.3.4 Volume Interleaving
To reduce cache misses, the volume is decomposed in small
blocks containing 323 samples [11] where the bits of the
coordinates are interleaved as follows:

(Xn�0, Yn�0, Zn�0) ⇒ Zn�5Yn�5Xn�5Z4Y4X4�Z0Y0X0

A 32-entry table and binary operators are used to interleave the
five lower bits and to generate the new memory address.

5. RESULTS
Here, we are looking at the first results of this new algorithm. The
entire program except trilinear interpolation and memory copying
(SIMD instructions) is written in C++. In contrast with many
other DVR methods using small window sizes, here, all rendering
are made on 5122 pixel images not to degrade image quality. The
number of quantized space directions used for shading is equal to
8192. Pixel subdivisions (fig.2a) and precomputed rays (fig. 2b)
are both fixed to 162, allowing up to 4x zoom without visible
noise. The sampling_rate variable determining the distance
between two consecutive interpolations is initialized such as
∆s=0.5, which allows between two and four samplings along a ray
within a cell. Thus, these settings make high quality possible.
Finally, due to the high efficiency of our algorithm when
visualizing isosurfaces, the current implementation can also
superimpose two rendering passes stemming from different
transfer functions.

Benchmarks have been performed on two platforms allowing
3DNow! instructions: a low-end platform based on an AMD
Duron 600 MHz (64/64 KB L1/L2 data cache) with 320 MB
(SDRAM 100 MHz) and a more recent AMD Athlon 1.4 GHz
(64/256 KB L1/L2 data cache) with 512 MB (DDR SDRAM 266
MHz). Four datasets have been used: the usual head, brain and
engine from UNC Chapel Hill plus a highly compact angiography
dataset (courtesy of Philips Research Labs). An additional PIII
platform has also be used for a comparison with the
Ultravis system.

The main results are summarized in table 1. All the
measurements are averaged with 24 renderings. We observe a
minimal/maximal divergence of less than 30% about rendering
times. Octree processing and volume preshading take
approximately 20 seconds, but are computed only once per
volume. The fourth column indicates the number of cells (in
thousands) within the volume that are neither transparent nor
removed by the hidden volume test, even if all the rays going
through them can be already opaque. The next column gives the
ratio of occluded cells. The sixth column is about the number of
octree nodes that are run. The values within parentheses are
measured without hidden volume removal, which is disabled to
rate its efficiency. The seventh column indicates the number of
sampled points along the rays and the last two columns give the
rendering times.

UNC Head (a) 256x256x225 Single 343K (4093K)* 91.70% 907K (4711K)* 645K 6.2 fps 2.6 fps
UNC Head (b) 256x256x225 Single 268K (1255K)* 79.70% 694K (1475K)* 453K 7.7 fps 3.4 fps
UNC Head (c) 256x256x225 Double 617K (5120K)* 88% 1570K (6300K)* 1077K 3.1 fps 1.4 fps
UNC Engine (d) 256x256x110 Single 236K (1453K)* 83.80% 621K (1686K)* 356K 9.1fps 4.5 fps
UNC Engine (e) 256x256x110 Double 371K (1175K)* 68.50% 759K (1570K)* 564K 5.6 fps 2.7 fps
UNC Engine (f) 256x256x110 Single 1544K (2150)* 28,2% 1822K (2750K)* 6747K 1.4 fps 0.55 fps
UNC Brain (g) 256x256x167 Single 226K (2434K)* 90.80% 593K (2808K)* 654K 7.7 fps 3.2 fps
Aneurism (h) 256x256x256 Single 71K (104K)* 31.80% 113K (190K)* 223K 20 fps 10 fps

Duron
600 MHz

* Without Hidden Volume Removal

Occluded
Cells Octree Nodes

Sampled
Points

Tbird
1.4 GHzVolume Size

Rendering
Mode Cells

Table 1: Measurements for different renderings.

The results show that interactive high-quality volume rendering
is possible on current high-end platforms when visualizing
isosurfaces. Better still, rendering remains interactive even with
highly complex transfer functions that include a great part of the
volume in the rendering process (f). No other algorithm running
on a standard workstation is able to produce such a frame rate
with this level of detail today. While methods based on 3D texture
hardware currently do not exceed 2 fps on 2563 volumes with a
limited accuracy, previously mentioned ray-casting techniques are
really slower. Only a Shear-Warp implementation should be able
nowadays to deliver a superior frame rate, but once again with an
important loss of quality that clearly limits its use. We have
compared the efficiency of our algorithm with the Ultravis system
[11], which is one of the most advanced ray-casting platforms.
The same parameters have been used with both methods, but the
Ultravis system, which generates 2562 pixel images only, uses
post-shading and can handle perspective renderings. This latter is
the main drawback of our algorithm, but it is only required in
some specific applications and many professional systems do not
implement it [26]. The results clearly show the superiority of our
approach, and like many other ray-casting algorithms, Ultravis
performs badly on datasets with much empty space (cf. bonsai and
aneurism datasets). Rendering times are only equals for the engine
dataset where early ray termination is very important, showing us
that HVR is also an efficient alternative to the lack of early ray
termination in object-order volume rendering. Last but not least,
we have noticed that our algorithm produces a much better image
quality, partially due to the low image resolution of Ultravis.

 By studying table 1 in great details, we have come to many
interesting conclusions. First, we can clearly see that hidden
volume removal eliminates a large fraction of the cells and octree
nodes within the opacity range when visualizing isosurfaces.
Here, the predominant parts of the rendering are the octree run
and the voxel loading, while trilinear interpolation becomes
predominant in the case of semi-transparent transfer functions. An
important fact is that the efficiency of HVR is very superior to the
method proposed by Lee and Ihm [9] where the ratio of occluded
splats for similar renderings (b) and (g) is respectively only 25%
and 67%. Actually, this ratio can also be considered as a good
HVR speed-up estimation because our algorithm delivers an
approximately constant cell throughput (between 1.4 and 2.1
millions cells per second). Thus, hidden volume removal is a very
aggressive optimization here, but the recursive run of the octree
does not optimize it (as seen previously). A better approach in
future works might be a plane-by-plane volume run, allowing a
better efficiency in occlusion tests. However, the non-leaf nodes
will be run several times. Another observation is that the
rendering times seem to scale well with the processor clock
frequency, even if the two configurations are quite different
(memory clock, L2 cache size).

6. CONCLUSION
A volume rendering application must be carefully designed and
should always provide user-friendliness and accuracy. Hardware
implemented techniques, although they are fast and sometimes not
expensive, have limited on-board memory and are not flexible. On
the other hand software algorithms can handle a wide variety of
problems but suffer from a lack of performances. Our method
offers a new way to perform ray-casting on rectilinear grids,
achieving almost real-time volume rendering when visualizing
isosurfaces and at least, interactive renderings in general. These
achievements are mainly due to the efficient object-order ray-
casting approach that we have introduced and to its optimizations
like hidden volume removal. But in contrast with the rare software
techniques able to produce such a frame rate, our algorithm
reaches the high-level of details that scientific visualization
requires. Indeed, its features such as randomized high sampling
rate with trilinear interpolation, large image size (5122 pixels), and
interactive post-classification are facilitating devices.

We have found two drawbacks to our method. First, it is the use
of preshading that slightly degrades the quality and finally, the
lack of perspective projection. This latter is needed in stereo
viewing applications or in virtual reality for example, but it is not
required most of the time for scientific visualization where
parallel projection is often preferred. In the future, we should look
for a way to implement an efficient post-shading version of this
algorithm in order to prevent the frame rate from decreasing too
much. We are also planning to improve the rendering engine and
to use multi-processor based PCs.

7. REFERENCES
[1] B. Cabral, N. Cam and J. Foran. Accelerated volume rendering and

tomographic reconstruction using texture mapping hardware.
IEEE/ACM Siggraph symposium on volume visualization, 1994, pp.
91-97.

[2] F. Dachille, K. Kreeger, B. Chen, I. Bitter and Arie Kaufman. High-
quality volume rendering using texture mapping hardware. Proc.
1998 Siggraph/Eurographics workshop on graphic hardware, pp. 69-
76.

[3] K. Engel, M. Kraus and T. Ertl. High Quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In Proc
Eurographics/Siggraph workshop on graphic hardware, 2001.

[4] A. Van Gelder and K. Kim. Direct volume rendering via 3D texture
mapping hardware. Proc. Volume Rendering Symposium 1996., pp.
23-30, 1996.

[5] J. S. Gondek, G. W. Meyer and J. G. Newman. Wavelength
dependant reflectance functions. Siggraph�94 proc., 1994.

[6] N. Greene, M. Kass, G. Miller. Hierarchical Z-Buffer Visibility.
SIGGRAPH�93 Proc., 1993, pp. 231-238.

[7] N. Greene. Hierarchical polygon tiling with coverage masks.
SIGGRAPH�96 Proc., 1996, pp. 65-74.

[8] J. Huang, K. Mueller, N. Shareef, R. Crawfis. Fast splats: optimized
splatting on rectilinear grids. IEEE Visualization�00 proceedings,
October 2000.

[9] R. K. Lee and I. Ihm. On enhancing the speed of splatting using both
object-and-image space coherence. Graphical models and image
processing, vol. 62, no. 4, 2000. pp 263-282.

[10] J. Kajiya and B. Von Herzen. Ray tracing volume densities.
SIGGRAPH�84, July 1984, pp. 165-174.

[11] G. Knittel. The Ultravis System. IEEE/ACM SIGGRAPH Volume
visualization and graphics symposium 2000, October 2000, pp. 71-
78.

Table 2: Comparisons with the Ultravis system (PIII 600MHz, 512 MB)

Volum e Ultravis OO RC
UNC Head (a) 0.8 fps 2.4 fps
UNC Engine (d) 3.5 fps 3.5 fps
UNC Brain (g) 1.0 fps 3.2 fps
Aneurism (h) 0.45 fps 6.75 fps
Bonsai (f ig. 1) 0.5 fps 2.1 fps

[12] P. Lacroute and M. Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. SIGGRAPH�94,
1994, pp. 451-458.

[13] M. Levoy. Display of surfaces from volume data. IEEE Comp.
Graph. & App., Vol. 8, no. 5, 1988, pp. 29-37, 1988.

[14] M. Levoy. Efficient raytracing of volume data. ACM Transactions
on graphics, vol. 9, no. 3, 1990, pp. 245-261.

[15] S.R. Marschner and R.J. Lobb. An evaluation of reconstruction
filters for volume rendering. Proceedings of visualization�94,
October 1994, pp. 100-107.

[16] N. Max. Optical model for direct volume rendering. IEEE
Transaction on visualization and computer graphics, 1995, Vol. 1,
no. 2, pp. 99-108.

[17] M. Meißner, U. Hoffman and W. Straßer. Enabling classification
and shading for 3D texture mapping based volume rendering using
OpenGl and extensions. Proc. Visualization�99, 1999, pp. 207-214.

[18] M. Meißner, J. Huang, D. Bartz, K. Mueller, R. Crawfis. A practical
comparison of popular volume rendering algorithms. IEEE/ACM
SIGGRAPH Volume visualization and graphics symposium 2000,
October 2000, pp. 81-90.

[19] B. Mora, J.P. Jessel and R. Caubet. Accelerating volume rendering
with quantized voxels. IEEE/ACM SIGGRAPH Volume
visualization and graphics symposium 2000, Oct. 2000, pp. 63-70.

[20] B. Mora, J.P. Jessel and R. Caubet. Visualization of isosurfaces with
parametric cubes. Eurographics�01 Proc., vol. 20 no. 3, pp. 377-384,
September 2001.

[21] T. Möller, R.Machiraju, K.Mueller, R.Yagel. Evaluation and Design
of Filters Using a Taylor Series Expansion. IEEE Transactions on
Visualization and Computer Graphics, ITVCG 3(2): 184-199, June
1997.

[22] L. Mroz, H. Hauser and E. Groller. Interactive high quality
maximum intensity projection. Eurographics�00, vol. 19, no 3, 2000.

[23] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet
buffer-based splatting. Proc. Visualization�98, 1998, pp. 239-245.

[24] K. Mueller, T. Möller and R. Crawfis. Splatting without the blur.
Proc. Visualization'99, 1999, pp. 363-371.

[25] K. Mueller, N. Shareef, J. Huang and R. Crawfis. Splatting. High-
quality splatting on rectilinear grids with efficient culling of
occluded voxels. IEEE TVCG, Vol. 5, No. 2, 1999, pp. 116-134.

[26] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer and L. Seiler. The
volumepro real-time ray-casting system. SIGGRAPH�99, 1999, pp.
251-260.

[27] T. Theußl, T. Möller, M. E. Gröller. Optimal Regular Volume
Sampling. IEEE Visualization 2001 proceedings, October 2001, San
Diego.

[28] M. Wan, A. Kaufman and S. Bryson. High performance presence-
accelerated ray casting. proc. Visualization�99, 1999, pp. 363-371.

[29] R. Westermann and T. Ertl, Efficiently using graphics hardware in
volume rendering applications. SIGGRAPH�98, 1998, pp. 169-177.

[30] R. Westermann and B. Sevenich. Accelerated volume ray-casting
using texture mapping. In proc. 2001

[31] L. Westover. Interactive volume rendering. Proceedings of the
Chapel Hill Workshop on volume visualization, may 1989.

[32] L. Westover. Footprint evaluation for volume rendering.
SIGGRAPH�90 Proc., 1990, pp. 367-376.

[33] C. Wittenbrink, T. Malzbender, and M. Goss. Opacity-weighted
color interpolation for volume sampling. Symposium on Volume
Visualization, pp. 135-142, 1998.

[34] R. Yagel and A. Kaufman. Template-based volume viewing. Proc.
Eurographics�92, vol.11, no.3, pp. 153-167.

[35] H. Zhang, D. Manocha, T. Hudson and K. E. Hoff. Visibility culling
using hierarchical occlusion Maps. SIGGRAPH�98 Proc., 1998, pp.
77-88.

[36] J. Wilhelms and A. Van Gelder. A coherent projection approach for
direct volume rendering. SIGGRAPH�91 Proc., pp. 275-284.

[37] L. Sobierarjski and R. Avila. A Hardware Acceleration Method for
Volume Ray Tracing. IEEE Visualization 1995.

(a) (b) (c) (g)

(d) (e) (f) (h)

Figure 8: Different renderings used for the benchmarks

